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Abstract: This paper establishes a new price-sensitive demand model which considers stochastic disturbance simi-
lar to ARMA(1,1) model. We examine the impact of two forecasting methods on the bullwhip effect in a two-stage
supply chain with two retailers. It is assumed that two retailers face the same demand model and an order-up-to
inventory policy is employed. The lead-time demand is forecasted respectively by the moving average (MA) and
exponential smoothing(ES) methods. The effect of various parameters is investigated by numerical simulation and
the bullwhip effect under two forecasting methods is compared. The results show that the MA forecasting method
is better than the ES method based on our demand process. Besides, conclusions indicate that both the extent of
consumers concerning about the historical price volatility and the lead time play significant roles on reducing the
bullwhip effect, and stochastic disturbance impacts the bullwhip effect differently based on the lead time. The
larger the variance of stochastic disturbance of the retailer which has a longer lead time, the greater the bullwhip
effect in the supply chain. The moving average coefficient of stochastic disturbance generally has a little different
impact on the bullwhip effect under the different relationship of the lead time between two retailers. Moreover,
some proposals are present to help managers to take appropriate measures and select the forecasting method that
yields the lowest bullwhip effect.
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1 Introduction
For many companies, bullwhip effect is a high-risk
phenomenon prevalent in their marketing activities,
and has serious impacts on operational costs. With its
influence on integrating business activities, bullwhip
effect has become a focus in supply chain manage-
ment research, attracting the attention of researchers
and practitioners. It refers to the empirical and the-
oretical observation that as moving up from a down-
stream member to an upstream member, the demand
variability placed by the downstream member to its
(immediate) upstream member tends to be amplified
in a supply chain.

The first evidence of this phenomenon can be
traced back to Forrester (1958, 1961) who discov-
ered its causes and possible remediation in the con-
text of industrial dynamics. After that, many re-
searchers also acknowledged the existence of the bull-
whip effect in supply chains, such as Blinder (1982),
Blanchard (1983), Burbidge (1984), Caplin (1985),
Blinder (1986) and Kahn (1987). Then, a well-
known classic beer game which has been used in busi-
ness schools for decades is experimented by Sterman

(1989) to illustrate the bullwhip effect. The bullwhip
effect is first named by Lee et al. (1997a, b), whose
works is the milestone for the research of bullwhip
effect, who identified that demand signal processing,
non-zero lead time, supply shortage, order batching,
and price fluctuation are the five main causes of the
bullwhip effect in supply chains.

Base on Lee et al. (1997a, b), the bullwhip effect
may be mitigated by eliminating its main causes. With
various causes of the bullwhip effect, the demand pro-
cess and forecasting methods are considered most fre-
quently because they directly affected the inventory
system of supply chains. Different demand processes
and different forecasting methods are employed in a
lot of papers.

Lee et al. (2000) followed a first-order autore-
gressive process and a simple order-up-to inventory
policy with a minimum mean square error (MMSE)
forecasting technique measuring the benefit of infor-
mation sharing between a retailer and a manufacturer
in a two-stage supply chain. Using a first-order au-
toregressive (AR(1)) demand process similar to Lee
et al. ( 1997a, b), Chen et al. (2000a,b) investigat-
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ed the impact of the simple moving average(MA) and
exponential smoothing(ES) forecasts on the bullwhip
effect for a simple, two-stage supply chain with one
supplier and one retailer. Likewise, Zhang (2004) also
used an AR(1) demand process to investigate the im-
pact of different forecasting methods on the bullwhip
effect. Luong (2007) measured the bullwhip effect in
a simple supply chain including one retailer and one
supplier by performing the AR(1) demand forecasting
process on the base stock policy for their inventory
under the MMSE forecasting technique. As a sequel
of Luong (2007), Luong and Phien(2007) investigat-
ed autoregressive models with higher order, first han-
dling AR(2) demand process and considering the gen-
eral AR(p) demand process with the MMSE method.
By quantifying the bullwhip effect, all the above pa-
pers using an AR(1) process, investigated the behav-
ior of autoregressive coefficients and order lead-time
and showed effects of different forecasting method-
s on bullwhip effect measures. Moreover, Duc et al.
(2010) continued using AR(1) process to examine the
effect of a third-party warehouse on the bullwhip ef-
fect and inventory cost in a three-stage supply chain
with a supplier ,a third-party warehouse and two re-
tailers.

Note that several academics (Lee et al. (1997a,b),
Chen et al. (2000 a,b), Xu et al. (2001), Zhang
(2004) et al.) assumed a pure autoregressive pro-
cess and Graves (1999) assumed a pure moving av-
erage process. However, the demand model seldom
has characteristics of a pure autoregressive process
or a pure moving average process. While the de-
mand process usually has characteristics of both mov-
ing average and autoregressive process, Pindyck et al.
(1998) proposed that a mixed autoregressive-moving
average (ARMA) demand process is more suitable for
the time series of the market demand than the AR
model. Subsequently, the ARMA model is frequently
used. Disney et al.(2006) quantified the bullwhip ef-
fect for the mixed first-order autoregressive-moving
average(ARMA(1,1)) demand pattern under the ES
forecasting method in a single supply chain echelon
with the base stock policy for replenishment. Duc
et al.(2008) investigated the impact of the autoregres-
sive coefficient, the moving average parameter, and
the lead time on the bullwhip effect via a ARMA(1,1)
model when the demand forecast is performed by the
MMSE method. Likewise, by using the dynamic sim-
ulation, Feng (2008) evaluated the different effects of
three forecasting methods, i.e., MA, ES and MMSE
methods, for the simple supply with an ARMA(1,1)
model chain as is done in the research of Disney et
al. (2006). As an extension of Feng (2008), Ma(2013)
made a new supply chain with one supplier and two
retailers who both employ the ARMA(1,1) demand

process, and analyzed and compared the impact of
parameters on the bullwhip effect under various fore-
casting methods. As a further development of ARMA
model, Gilbert(2005) used a new Autoregressive Inte-
grated Moving Average (ARIMA) time-series model
to present the causes of the bullwhip effect and man-
agerial insights about reducing the bullwhip effect in a
multistage supply chain model. Based on the ARIMA
demand pattern, Dhahri (2007) alleviated the bullwhip
effect in two respects-namely increase of the stock
level and reduction of the service given back to cus-
tomers.Claudimar(2014) also used ARIMA model for
demand forecasting in the food retail.

Performance of a supply chain is affected not on-
ly by demand forecasting but also by price fluctua-
tion. The price has an important effect on the demand
variability. However, while many researchers explore
the demand process, inventory policy and forecast-
ing technique, seldom papers consider price in the
demand process. However, in other supply chain re-
search, kinds of price-demand models are used, such
as many recent papers: Junhai Ma(2014), Lei X-
ie(2014), Fang Wu(2014) and Lisha Wang(2014). Re-
fer to these price models and classic cournot model,
prices can be added into the demand process for s-
tudying the influence on the bullwhip effect. Hamis-
ter et al.(2008) improved the first-order autoregressive
and considered the effect of current prices on the de-
mand based on the correlation with the previous de-
mand. Rong et al.(2009) put forward that the demand
is not only affected by the current price, but also by the
previous period of price, for analyzing the impact of
price fluctuation and consumer response on the sup-
ply chain in the supply disruptions. Furthermore, a
nonlinear demand process about retail price was es-
tablished by Ma et al. (2008) and this paper studied
retailer’s demand decision and the complex behavior
between the retailer and the whole supply chain. Re-
cently, Ma et al.(2012a) established a price-sensitive
linear demand model by considering the current price
and the one period-ahead price in a two-stage supply
chain with one supplier and one retailer, and analyzed
the impact of price forecasting behavior by consumer-
s on the BWE and inventory level. In a sequel, Ma et
al.(2012b) extended the research to the case in which
n period-ahead price is used in the demand process to
investigate the impact of price forecast, furthermore,
extended their results to multiple retailers and derived
the analytical total order quantity.

This paper continues to study the price-sensitive
demand process on the impact of bullwhip effect. In
the current research, we will quantify the bullwhip
effect in a two-stage supply chain with one supplier
and two retailers on a price-sensitive demand process.
Furthermore, a measure of the bullwhip effect will
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be developed under the simple ES and MA forecast-
ing technique, based on a replenishment model which
is similar to the one used by Chen et al. (2000a,b).
Meanwhile the retailers both employ the base stock
policy for replenishment. We also analyze the impact
of parameters on the BWE under the MA and ES fore-
casting methods and compare the different effect of
two methods on the bullwhip effect.

Our paper differs from the previous research in
the following ways. First, we develop a new demand
process in which we add the first-order moving av-
erage random disturbance into the price-sensitive de-
mand model used in the work of Ma et al. (2012b),
in order to evaluate the impact of price fluctuation and
the random disturbance parameter on the bullwhip ef-
fect. Second, the current research aims at determin-
ing an exact measure of the bullwhip effect in a sup-
ply chain with one supplier and two retailers, which is
closer to the actual situation, while Ma et al.( 2012a,
b) mainly developed a bullwhip effect measure for a
simple two-stage supply chain with one supplier and
one retailer only.

The remaining part of this paper is organized as
follows. In section 2, we present the stationary prop-
erty of the new price-sensitive demand process in a
new supply chain with one supplier and two retailer-
s which both employ the order-up-to inventory poli-
cy. In section 3, we quantify the bullwhip effect un-
der MA and ES forecasting methods and derive the
expression of important parameters such as lead-time
demand forecast and variance of lead-time demand
forecast error. We investigate its behavior and discuss
the effects of parameters on the bullwhip effect under
different forecasting methods, then, compare the im-
pact of two forecasting methods on the bullwhip effect
in section 4. Finally, a short summary is concluded for
this paper in section 5. Proofs for some expressions in
this paper are summarized in the Appendix.

2 Supply chain model
This research is conducted in two stages with one sup-
plier and two retailers(see Figure.1). In the paper, we
assume that our two retailers are in a duopolistic com-
petitive industry. The two retailers face the customer
demands which consider price in a ARMA(1,1) pro-
cess, and place orders to the supplier respectively. The
new supply chain model is presented in this section.

2.1 Demand process
The demand forecast is performed through AR(p)(Lee
et al., 1997a,b; Chen et al., 2000a,b; Zhang, 2004;
Duc, 2010),ARMA(1,1) (Duc, 2008; Feng, 2008; Ma,
2013) and ARIMA(Gilbert, 2005; Dhahri, 2007) in

Customer

Retailer 1

Retailer 2

Supplier

t
d

1,td

2,td
2,tq

1,tq

t
q

Figure 1: Two-stage supply chain model

most research which dont consider pricing .However,
in our paper, demand is contingent on price and price
volatility has great impacts on the demand.Only con-
sidering current price, we can get price-sensitive de-
mand function model:dt = a − bpt. In fact, price
volatility may cause consumers to purchase in ad-
vance. Similar to the customer behavior of MaY.G.et
al.(2012),we also emphasize on the impact of cur-
rent and previous prices of the demand based on the
autoregressive-moving average model. We add s-
tochastic disturbance into the demand model.Retailers
order and replenish their stock from a supplier on a
fixed time interval to supply customer demand. All
shortages are backordered.

Consider retailer 1 facing demand of the form

d1,t = a− bp1,t + rb(p1,t −
n∑
i=1

p1,t−i/n)

+ ε1,t − θ1ε1,t−1

(1)

Here,d1,t represents unit demand in the period t,
which is linearly decreasing in price. p1,t is the mar-
ket price during period t, which is independent and
identically distributed random variables.a is the mar-
ket demand scale and b is a price sensitive coefficient,
where a > 0, b > 0. r is the extent of customer con-
cern about historical price volatility. The assumption
of 0 ≤ r < 1 assures that the negative impact of price
during period t still dominates on the demand in the
period t. When r = 0, the market demand is only
related with the price in period t, ignoring the impact
of the price-prediction behavior of consumers on de-
mand under price fluctuation. ε1,t is independent and
identically distributed from a normal distribution with
mean 0 and variance σ12. θ1 is the first-order moving
average coefficient of retailer 1, where −1 < θ1 < 1.
n is the span of previous prices for the demand model.

For the demand process to be stationary, we must
have

E(d1,t) = E(d1,t−1) = E(d1), ∀t
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Hence, a stationary condition can be given as

E(d1) = a− bE(p1,t) + rb(E(p1,t)

−
n∑
i=1

E(p1,t−i)/n).

In this paper, we assume

E(p1,t) = E(p1,t−1) = E(p1),∀t

and then, we can get

E(d1) = a− bE(p1) (2)

In addition, the variance of demand can be

V ar(d1,t) = b2(1− r)2V ar(p1,t)

+
r2b2

n2
V ar(

n∑
i=1

p1,t−i) + σ21 + θ21σ
2
1

Because of

V ar(p1,t) = V ar(p1,t−1) = V ar(p1)

we have

V ar(d1,t) = [b2(1− r)2 +
b2r2

n
]V ar(p1)

+ (1 + θ21)σ
2
1

(3)

and it results in

V ar(d1,t) = V ar(d1,t−1) = V ar(d1) (4)

Similarly, retailer 2 has the same demand model
with retailer 1

d2,t = a− bp2,t + rb(p2,t −
n∑
i=1

p2,t−i/n)

+ ε2,t − θ2ε2,t−1

(5)

Here, θ2 has the same property with θ1 accordingly.
n is the same with retailer 1. And, ε2,t has the same
meaning with ε1,t, with mean 0 and variance σ22. So
we can have

V ar(d2,t) = V ar(d2,t−1) = V ar(d2), (6)

E(d2) = a− bE(p2), (7)

V ar(d2,t) = [b2(1− r)2 +
b2r2

n
]V ar(p2)

+ (1 + θ22)σ
2
2.

(8)

2.2 Inventory policy
To supply the demand, we adopt the order-up-to in-
ventory policy in the system similar to Lee et al.
(1997a). We assume that two retailers both employ
the order-up-to inventory policy in which the order-
up-to level is determined to achieve a desired service
level. Retailer 1 place an ordered quantity q1,t to the
supplier at the beginning of period t to be delivered at
the beginning of period t+ L1, where L1 is the fixed
lead time for the supplier to fulfill an order of retailer
1. The order quantity q1,t can be given as

q1,t = y1,t − y1,t−1 + d1,t−1 (9)

where y1,t is the order-up-to inventory position at the
beginning of period t of retailer 1 after placing the
order in period t. While the base stock policy (Duc,
2008) is employed, the order-up-to level y1,t can be
determined by the sum of forecasted lead-time de-
mand and the safety stock as

y1,t = D̂L1
1,t + zσ̂L1

1,t (10)

in which D̂L1
1,t is the forecast for the lead-time demand

of retailer 1 which depends on the forecasting method
and lead time L1, σ̂L1

1,t is the standard deviation of
lead-time demand forecast error, z is the normal z s-
core determined based on a desired service level1.

Similarly, for retailer 2, the order quantity q2,t,
which is placed to the supplier in period t to be deliv-
ered at the beginning of period t+L2, where L2 is the
fixed lead time of retailer 1, can be given as

q2,t = y2,t − y2,t−1 + d2,t−1 (11)

The order-up-to level of retailer 2 at period t is

y2,t = D̂L2
2,t + zσ̂L2

2,t (12)

Eqs.9-10 have the same meaning with Eqs.7-8.

2.3 Forecasting methods
In this paper, we assume that two retailers both use
the same forecasting method to forecast the lead-time
demand.Commonly, there are three forecasting tech-
nique: MA, ES and MMSE, for demand forecast. As
mentioned abovethey have been used in most similar

1The optimal order-up-to level yt can be implicitly determined
from inventory holding cost and shortage cost for backorders
(Heyman and Sobel, 1984; ZhangX., 2004). However, since it
is usually not easy to estimate these costs accurately in practice,
the approach of using the service levels often employed when the
order-up-to level is to be determined.
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research. Here, in our paper, according to the demand
process, we choose the first two forecasting methods.

In section 3, the bullwhip effect will be measured
respectively under the MA and ES forecasting meth-
ods. Those two forecasting methods will be intro-
duced in this section firstly.

2.3.1 The MA forecasting method
Using the MA forecasting method, we first have the
τ -period-ahead demand forecast given by

d̂t+τ = d̂t =
1

k

k∑
i=1

dt−i, τ ≥ 1 (13)

where k is the span (number of date points) for the
MA forecasting method. Then the lead-time demand
forecast is given as

D̂L
t =

L

k

k∑
i=1

dt−i (14)

2.3.2 The ES forecasting method
The ES forecasting method is an adaptive algorithm
in which one-period-ahead forecast is adjusted with a
fraction of the forecasting error. The demand forecast
with ES can be written as

d̂t = αdt−1 + (1− α)d̂t−1 (15)

where α denotes the fraction used in this process, also
called the smoothing factor, and 0 < α < 1.

3 Bullwhip effect with various fore-
casting technique

In this section, we derive the measure of the bullwhip
effect of a supply chain with one supplier and two
retailers under the MA and ES forecasting methods
mentioned above respectively.From an early start, the
bullwhip effect is a phenomenon in which the vari-
ance of demand information is amplified when mov-
ing upstream in a supply chain. Thus, it is reasonable
to measure the bullwhip effect by the ratio of the vari-
ance of order quantities experienced by the supplier to
the actual variance of demand quantities. This mean-
s has been used in previous research such as those
of Chen et al. (2000a, b), Duc (2010) and MaY.G.
(2012), and it is adopted in our research as well.

Total demand which two retailers face is

dt = d1,t + d2,t (16)

Take the variance of dt, we have

V ar(dt) = V ar(d1,t + d2,t)

= V ar(d1,t) + V ar(d2,t) + 2Cov(d1,t, d2,t)
(17)

Because p1,t and p2,t are both independent and identi-
cally distributed, we have

Cov(d1,t, d2,t) = 02 (18)

Take Eq.(3), Eq.(8) and Eq.(18) into Eq.(17), the
variance of customer demand can be written as

V ar(dt) = [b2(1− r)2 +
b2r2

n
]V ar(p1) + [b2(1− r)2

+
b2r2

n
]V ar(p2) + (1 + θ21)σ

2
1 + (1 + θ22)σ

2
2.

(19)

3.1 Bullwhip effect with MA forecasting of
lead-time demand

According to Eqs.(9)-(10) and Eq.(14), the order of
retailer 1 can be determined as

q1,t = y1,t − y1,t−1 + d1,t−1

=
L1

k
(

k∑
i=1

d1,t−i −
k∑
i=1

d1,t−1−i)

+ z(σ̂L1
1,t − σ̂L1

1,t−1) + d1,t−1

= (1 +
L1

k
)d1,t−1 −

L1

k
d1,t−k−1

+ z(σ̂L1
1,t − σ̂L1

1,t−1).

(20)

By the definition, the variance of lead-time demand
forecast error of retailer 1 at period t, (σ̂L1

1,t)
2 is given

as

(σ̂L1
1,t)

2 = V ar(DL1
1,t − D̂L1

1,t)

= V ar(DL1
1,t) + V ar(D̂L1

1,t)

− 2Cov(DL1
1,t , D̂

L1
1,t).

(21)

According to V ar(p1,t) = V ar(p1,t−1) =
V ar(p1), we can prove that the three terms in the fol-

2The demand between the two retailers doesn’t have the linear
correlation, but it does not mean that there is no contact. While the
total market demand is certain under some circumstances, more
demand for products of retailer 1 somehow inhibits the demand
for retailer 2 (Ma Y.G., 2012).
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lowing equation can be shown to reduce to:

V ar(DL1
1,t) = L1V ar(d1)− 2θ1(L1 − 1)σ21

+ 2V ar(p1)[−
L1(L1 − 1)

2
· rb

2

n
(1− r)

+
r2b2

n2

L1−1∑
i=1

(L1 − i)(n− i)],

V ar(D̂L1
1,t) =

L2
1

k
V ar(d1)− 2θ1(k − 1)(

L1

k
)2σ21

+ 2(
L1

k
)2V ar(p1)[−

k(k − 1)

2
· rb

2

n
(1− r)

+
r2b2

n2

k−1∑
i=1

(k − i)(n− i)],

Cov(DL1
1,t , D̂

L1
1,t) = −θ1L1

k
σ21 + [2(nrbL1)

2

· (4n− k − L1)− 4n3rb2L2
1]V ar(p1).

(22)

Proof: See the Appendix.
These three terms don’t depend on t. Consequent-

ly, the variance of lead-time demand forecasting error
of retailer 1 remains constant over time as well and
has no influence on the bullwhip effect. So, the order
quantity of retailer 1 is easily obtained as

q1,t = (1 +
L1

k
)d1,t−1 −

L1

k
d1,t−k−1. (23)

Similarly, the retailer 2 has the same span k with
the retailer 1, and also has σ̂L2

2,t = σ̂L2
2,t−1, so the order

quantity placed by the retailer 2 is

q2,t = (1 +
L2

k
)d2,t−1 −

L2

k
d2,t−k−1. (24)

Then, total order quantity of retailers in period t under
the MA forecasting method is

qt = q1,t + q1,t

= (1 +
L1

k
)d1,t−1 −

L1

k
d1,t−k−1

+ (1 +
L2

k
)d2,t−1 −

L2

k
d2,t−k−1.

(25)

Proposition 1 The variance of the total order quanti-
ty at period t under the MA forecasting method can be
given as

V ar(qt)n≥k

= {[(1 + L1

k
)2 + (

L1

k
)2](1− r)2

+[1− 2
L1

k
− 2(

L1

k
)2]
r2

n
+ (2L1 + 2

L1
2

k
)
r2

n2

+ 2
L1

k
(1 +

L1

k
)
r

n
}b2V ar(p1)

+ {[(1 + L2

k
)2 + (

L2

k
)2](1− r)2

+ [1− 2
L2

k
− 2(

L2

k
)2]
r2

n

+ (2L2 + 2
L2

2

k
)
r2

n2

+ 2
L2

k
(1 +

L2

k
)
r

n
}b2V ar(p2)

+ [(1 +
L1

k
)2 + (

L1

k
)2](1 + θ21)σ

2
1

+ [(1 +
L2

k
)2 + (

L2

k
)2](1 + θ22)σ

2
2

(26)

with n ≥ k, and

V ar(qt)n<k

= {[(1 + L1

k
)2 + (

L1

k
)2][(1− r)2 +

r2

n
]

+ 2
L1

k
(1 +

L1

k
)
r

n
(1− r)}b2V ar(p1)

+ {[(1 + L2

k
)2 + (

L2

k
)2][(1− r)2 +

r2

n
]

+ 2
L2

k
(1 +

L2

k
)
r

n
(1− r)}b2V ar(p2)

+ [(1 +
L1

k
)2 + (

L1

k
)2](1 + θ21)σ

2
1

+ [(1 +
L2

k
)2 + (

L2

k
)2](1 + θ22)σ

2
2

(27)

with n < k.

Proof: See the Appendix.
For simplicity, Eq.26 can be written as

V ar(qt)n≥k = b2A1V ar(p1) + b2A2V ar(p2) +A3

(28)

where b2A1 is the coefficient of V ar(p1), b2A2 is the
coefficient of V ar(p2), A3 is the constant term in the
Eq.26.

Eq.27 can be written as

V ar(qt)n<k = b2B1V ar(p1) + b2B2V ar(p2) +B3

(29)

where b2B1 is the coefficient of V ar(p1), b2B2 is the
coefficient of V ar(p2), B3 is the constant term in the
Eq.27.

Then, from Eq.19 and Eqs.28-29, the bullwhip ef-
fect measure, denoted withBWEMA in this case, can
be derived as
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BWEMA =
V ar(qt)

V ar(dt)
=

b2V ar(p1)(A1+A2γ2)+A3

b2V ar(p1)[(1−r)2+ r2

n
](1+γ2)+(1+θ21)σ

2
1+(1+θ22)σ

2
2

, n≥k

b2V ar(p1)(B1+B2γ2)+B3

b2V ar(p1)[(1−r)2+ r2

n
](1+γ2)+(1+θ21)σ

2
1+(1+θ22)σ

2
2

, n<k

(30)

where γ=
√

V ar(p2)
V ar(p1)

and means the consistency of
price volatility between the two retailers.

3.2 Bullwhip effect with ES forecasting of
lead-time demand

In this section, we use the exponential smoothing fore-
casting technique to perform demand forecast. Ac-
cording to Zhang (2004), we know the forecasting de-
mand of retailer 1 at period t is

d̂1,t =

∞∑
i=0

α1(1− α1)
id1,t−i−1 (31)

where α1 is the smoothing exponent of retailer 1.
Therefore, the d̂1,t can be interpreted as the weight-
ed average of all past demand of retailer 1 with expo-
nentially declining weights. Then, the τ -period-ahead
forecasting demand for retailer 1 with ES method sim-
ply extends the one-period-ahead forecast similar to
the MA case where

d̂1,t+τ = d̂1,t.τ ≥ 1 (32)

Because of Eq.32, the forecast for the lead-time de-
mand of retailer 1 can be expressed as

D̂L1
1,t = L1d̂1,t. (33)

Using the Eq.15 and Eq.33, we also have

D̂L1
1,t − D̂L1

1,t−1 = α1L1(d1.t−1 − d̂1,t−1). (34)

The variance of lead-time demand forecasting er-
ror (σ̂L1

1,t)
2 under ES forecast method again is a con-

stant term over time. Its derivation parallels the MA
case where

(σ̂L1
1,t)

2 = V ar(DL1
1,t − D̂L1

1,t)

= V ar(DL1
1,t) + V ar(D̂L1

1,t)− 2Cov(DL1
1,t , D̂

L1
1,t).

The first term V ar(DL1
1,t) is identical to the case of

MA forecast. The second term in the variance formula

can be obtained from the following expression:

V ar(D̂L1
1,t) =

α1L
2
1

(2− α1)
V ar(d1) + 2L2

1V ar(p1)

{ r2b2

n2[1− (1− α1)
2]
[α1(1−α1)(n−1)

− (1− α1)
2 + (1− α1)

n+1]

− rb2(1− r)nα1(1− α1)

n2[1− (1− α1)
2]

}.

(35)

Proof: See the Appendix.
The last covariance term between lead-time de-

mand and forecasting lead-time demand can be de-
rived similarly. So, these three terms all dont depend
on t.

Then, according to Eqs.9-10 and Eq.34, the order
quantity of retailer 1 at period t is

q1,t = α1L1(d1.t−1 − d̂1,t−1) + d1.t−1. (36)

Likewise, the order quantity placed by retailer 2
at the beginning of period t can be identified respec-
tively, as

q2,t = α2L2(d2.t−1 − d̂2,t−1) + d2.t−1 (37)

where α2 is the smoothing exponent of retailer 2, and
d̂2,t−1 is the forecast of the demand at period t for
retailer 2.

From the above, total order quantity received by
the supplier at the beginning of period t under ES fore-
casting method is

qt = q1,t + q2,t

= α1L1(d1.t−1 − d̂1,t−1) + d1.t−1

+ α2L2(d2.t−1 − d̂2,t−1) + d2.t−1.

(38)

Proposition 2 The variance of the total order quanti-
ty at period t under the ES forecasting method can be
given as

V ar(qt) = [(1 + α1L1)
2 +

α3
1L

2
1

2−α1
](1 + θ21)σ

2
1

+[(1 + α2L2)
2 +

α3
2L

2
2

2−α2
](1 + θ22)σ

2
2

+{[(1 + α1L1)
2 +

α3
1L

2
1

2−α1
][(1− r)2 + r2

n ]
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+
(2rα1L1)

2(1−α1)

n(2− α1)
+
2r2α1L

2
1(1−α1)

n+1

n2(2− α1)

− 2rα1L
2
1(1− α1)(r + nα1)

n2(2− α1)

− 2(1 + α1L1)α1L1

[
2r2 − r

n
− r2[1− (1− α1)

n]

n2α1
]}b2V ar(p1)

+ {[(1 + α2L2)
2 +

α3
2L

2
2

2− α2
][(1− r)2 +

r2

n
]

+
(2rα2L2)

2(1−α2)

n(2− α2)
+
2r2α2L

2
2(1−α2)

n+1

n2(2− α2)

− 2rα2L
2
2(1− α2)(r + nα2)

n2(2− α2)

− 2(1 + α2L2)α2L2

[
2r2 − r

n
− r2[1− (1− α2)

n]

n2α2
]}b2V ar(p2).

(39)

Proof: See the Appendix.
Because the variance of total order quantity is too

complex, we set

V ar(qt) = b2C1V ar(p1) + b2C2V ar(p2)

+ C31(1 + θ21)σ
2
1 + C32(1 + θ22)σ

2
2

(40)

where C31(1+ θ
2
1)σ

2
1 +C32(1+ θ

2
2)σ

2
2 is the constant

term, b2C1 is the coefficient of V ar(p1), b2C2 is the
coefficient of V ar(p2) in Eq.39.

Then, the bullwhip effect measure, denoted with
BWEES in this case, can be derived from (19) and
(39) as

BWEES =

b2V ar(p1)(C1+C2γ
2)+C31(1+θ21)σ

2
1+C32(1+θ22)σ

2
2

b2V ar(p1)[(1−r)2+ r2

n
](1+γ2)+(1+ vθ21)σ

2
1+(1+θ22)σ

2
2

(41)

similarly, where γ=
√

V ar(p2)
V ar(p1)

4 Behavior and comparison of bull-
whip effect for MA and ES fore-
casting methods

In the last section, we have the exact measure of
the bullwhip effects for different forecasting tech-
nique. We will explore and illustrate the impact of
various parameters on the bullwhip effect, such as
price-sensitive coefficient, lead time, the span of MA
method and so on, by using the numerical experiments
in this section.Then, according to the analysis result-
s, some economic and managerial proposal can be
achieved for the members of supply chain on reduc-
ing the bullwhip effect.

4.1 Behavior of the bullwhip effect under the
MA forecasting technique

As shown in Eq.30, the expression of the bullwhip ef-
fect under the MA forecasting technique has two cases
where they are n ≥ k and n < k .

Case 1:n ≥ k

First, we would like to consider the case 1: the
bullwhip effect in the condition of n ≥ k. Figs. 2-
12 simulate the bullwhip effect in case 1 and illustrate
the impact of parameters on the BWE. Other than the
most previous research, we mainly explore how the
extent of customer concerning about historical price
volatility effects the BWE under the MA forecasting
method.

Fig. 2 depicts the impact of r on the bullwhip ef-
fect, for the case which n = 5, k = 2, b = 2.5, L2 =
4, θ1 = θ2 = 0.3,σ1 = σ2 = 1, V ar1 = 4, γ = 1
for simplification. This figure shows that with the in-
crease of r from 0 to 1, the BWEMA first increases
slowly, and then decreases rapidly after it reaches the
maximum value at a specific r value. We also ob-
serve that, in this situation, by shifting the lead-time
of retailer 1, the bullwhip effect becomes to be greater
with the increase of L1. When the r tends to 1, the
bullwhip effect is smaller than that which r tends to
0, while the bullwhip effects are both greater than 2.
These results can be presented clearly in the Table 1.
So, if r is smaller than a certain value, we can lessen
r to decrease the bullwhip effect. In a similar way,
when r is larger than the certain value, the larger the
better. From Table 1, it can be seen that as the val-
ue of L1 increases, the rmax is fixed in spite of the
bullwhip effect increasing for any value of r > 0. In
a word, if customers pay attention to the fluctuations
of historical price enough, the bullwhip effect will be
smaller.

Figs.3-4 show the impact of b on the bullwhip ef-
fect under the different values of r which we vary the
price-sensitive coefficient b from 0 to 10 and we set
n = 5, k = 2, L2 = 4, θ1 = θ2 = 0.3, σ1 = σ2 =
1, V ar1 = 4, γ = 1. Fig.3 shows that when r = 0.3,
the bullwhip effect increases a little slowly. And then,
when b increases to a small certain value, the bull-
whip effect tends to be stable in spite of the continue
increase of b.However, Fig.4 shows the complete con-
trary condition. When r = 0.8, the bullwhip effect
decreases slowly, and the same, the bullwhip effec-
t tends to be stable with the continuous increase of b,
after b increases to a small certain value. In addition,
from the figs.3-4, we can observe the certain value of
b in the case of r = 0.3 is smaller than that in the case
of r = 0.8. As seen, in the market, when we face that
customers pay close attention to the historical price
volatility of product, that is r is bigger than a certain
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Table 1: Partial values of the bullwhip effect measure
for different r under the MA

r
L1

2 3 4 5 6 7
0 9.000 10.750 13.000 15.750 19.000 22.750
0.05 9.078 10.845 13.117 15.893 19.175 22.961
0.1 9.157 10.941 13.236 16.040 19.353 23.177
0.15 9.237 11.039 13.355 16.186 19.533 23.394
0.2 9.315 11.134 13.472 16.330 19.708 23.605
0.25 9.388 11.223 13.582 16.465 19.873 23.805
0.3 9.453 11.302 13.679 16.584 20.018 23.980
0.35 9.502 11.362 13.753 16.676 20.130 24.116
0.4 9.529 11.395 13.793 16.725 20.190 24.188
0.45 9.522 11.386 13.782 16.712 20.173 24.168
0.5 9.466 11.318 13.699 16.609 20.048 24.016
0.55 9.344 11.170 13.517 16.385 19.775 23.686
0.6 9.139 10.920 13.209 16.007 19.314 23.129
0.65 8.834 10.548 12.751 15.444 18.627 22.299
0.7 8.420 10.043 12.130 14.680 17.694 21.172
0.75 7.902 9.412 11.353 13.726 16.530 19.765
0.8 7.306 8.686 10.459 12.627 15.189 18.145
0.85 6.675 7.917 9.513 11.464 13.769 16.430
0.9 6.061 7.168 8.592 10.332 12.388 14.760
0.95 5.512 6.499 7.768 9.319 11.152 13.267
rmax 0.42 0.42 0.42 0.42 0.42 0.42

value, we could have a larger value of b for the small-
er bullwhip effect. On the contrary, if the production
is insensitive of the customer concern about the his-
torical price volatility, we can decrease the bullwhip
effect by decreasing the value of b.

Figs.5-8 mainly show the effect of the first-order
moving average coefficient of retailer 2 θ2 on the bull-
whip effect. From Eq.30, we can know that the bull-
whip effect is a function of θ22 and the range of θ2 is
from -1 to 1. So the bullwhip effect is a symmetric
function of θ2. It can be seen that the bullwhip effect
decreases very slowly to the minimum and becomes to
increase slowly with the increase of θ2 when L1 < L2

in the Fig.5. By contrast, from Fig.6, the bullwhip ef-
fect increases very slowly when −1 < θ2 < 0 and
then the bullwhip effect decreases very slowly when
it reaches the maximum at θ2 = 0 under the condi-
tion of L1 > L2. We can know that from Figs. 5-
6, the range of growth of the bullwhip effect become
larger when shifting the gap of the lead time between
retailer 1 and retailer 2. From our research, we al-
so discover that these results are proper for any value
of 0 < r < 1 (In order to make the article concise,
this effect is not shown in the paper). In a word, the
square of the moving average coefficient of the retail-
er with a longer lead time is larger, the bullwhip effect
is greater.

However, there are some differences in the case
of L1 = L2 for θ2. Fig.7 shows a surface of the B-
WE corresponding to the different values of r and θ2
when we set L1 = L2 = 4, b = 2.5, n = 5, k =
2, θ1 = 0.3, σ1 = σ2 = 1, V ar1 = 4, γ = 1. The
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Figure 2: Effect of r on the BWE under the MA
method
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Figure 3: Effect of b on the BWE under the MA
method in the case of r = 0.3
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Figure 4: Effect of b on the BWE under the MA
method in the case of r = 0.8
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Figure 5: Effect of θ2 on the bullwhip effect under the
MA in the case of L1 < L2
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Figure 6: Effect of θ2 on the bullwhip effect under the
MA in the case of L1 > L2
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der the MA in the case of L1 = L2
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Figure 8: Effect of θ2 on the bullwhip effect in the
case of L1 = L2(The projection of Fig.7)
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Figure 9: Effect of σ1 on the bullwhip effect under
different L1
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Figure 10: Effect of k on bullwhip effect for different
L1 under the MA method
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curve in Fig.8 is the X-Z projection for the surface in
Fig.7. From Figs.7-8, first, we can observe that the
variation tendency between the bullwhip effect and θ2
is changeful with the increase of r. The Fig.8 clear-
ly investigates how parameter θ2 affects the bullwhip
effect for different r when we set L1 = L2. It can
be seen that when r is very small, the bullwhip effect
increases a little slowly firstly, then decreases slowly
as well until r increases to a certain value. Then, the
trend is in the opposite direction. With the continue
increase of r, the bullwhip effect firstly decreases a
little slowly, and then increases slowly, and moreover,
the range of change become to be bigger and bigger.
In addition, the bullwhip effect reaches the minimum
or the maximum when θ2 = 0.

From Figs.5-8 and the above results, we can con-
clude that the change of θ2 has a little impact on the
bullwhip effect, and the greater relatively the square
of moving average parameter of the retailer which has
a shorter lead time is, the smaller the bullwhip effect
is. So the impact of θ on the bullwhip effect is af-
fected by other parameters. Only when the customers
concern about the historical price volatility enough, a
member of the supply chain can change θ2 to reduce
the bullwhip effect.

σ1 is the standard deviation of stochastic distur-
bance of retailer 1. From Eq.30 and Eq.41, we dis-
cover that the structure of the function of σ1 on the
bullwhip effect is the same under the different fore-
casting methods. Thus, σ1 affects the bullwhip effect
under different methods similarly. So we analyze the
influence of σ1 only in the case of n > k under the
MA method.

Fig.9 shows that how σ1 affects the bullwhip ef-
fect for different L1 by varying σ1 from 0 to 3 and
fixing other parameters. We can observe that, as σ1
increases, the bullwhip effect increases when L1 >
L2, and the bullwhip effect decreases as σ1 increas-
es when L1 < L2. This phenomenon implies that,
the larger the variance of stochastic disturbance of the
retailer which has a longer lead time, the greater the
bullwhip effect in the supply chain.And we also know
that when L1 = L2, the increase of σ1 also can lead
to the increase of the bullwhip effect.

Fig.10 depicts the relationship between the span
for the MA forecasting method k and the bullwhip ef-
fect for differentL1. From Fig.10, we can observe that
k is an important factor to the bullwhip effect. The
bullwhip effect is a decreasing function of k and we
can weaken the bullwhip effect by increasing k. But
k is not the bigger the better, since that when k reach-
es a certain value, the bullwhip effect almost will not
decrease with the increase of k again. Moreover, the
great k may increase costs associated with data col-
lection.
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Figure 11: Effect of n on bullwhip effect for different
k under the MA

We shift the span of previous prices to examine
how the parameter n affects the bullwhip effect for d-
ifferent k in Fig.11. We set n ≥ 5 in order to assure
the model is correct. Fig.11 implies that the great in-
crease of n results in a little change of the bullwhip
effect for a given value of k. So, in real life, the mem-
ber of a supply chain should consider many aspects
and select an appropriate value rather than a big value
for n.

0 1 2 3 4 5 6 7 8
2

4

6

8

10

12

14

16

b=2.5, k=3,n=5,L
2
=2,r=0.7,θ

1
=0.3,θ

2
=0.3,σ

1
=1,σ

2
=1,Var

1
=4

γ

B
W

E
M

A

 

 
L

1
=3

L
1
=4

L
1
=5

L
1
=6

L
1
=7

Figure 12: Effect of γ on bullwhip effect for different
L1 > L2 under the MA

Figs.12-13 show that γ affects the bullwhip effec-
t differently as the relationship of lead-time between
retailer 1 and retailer 2 is different. Fig.12 depicts the
bullwhip effect is a decreasing function of γ when we
vary L1 from 3 to 7 guaranteeing L1 > L2 = 2.
Fig.13 depicts the bullwhip effect is an increasing
function of γ when we set L1 = 2 guaranteeing
L1 < L2. From the definition, γ represents the consis-
tency of price volatility between two retailers, and the
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Figure 13: Effect of γ on bullwhip effect in the case
of L1 > L2 under the MA

greater γ means the larger V ar(p2) at a given value of
V ar(p1). From these two figures, it is clear that the
bullwhip effect measure increases as price volatility of
the retailer with a longer lead time increases, and the
bullwhip effect measure decreases as price volatility
of the retailer with a shorter lead time increases.

Case 1:n < k

According to the above analysis of parameters,
we have known some properties about the bullwhip
effect. In the following, we discuss the change of the
bullwhip effect in the case of n < k in Figs.14-16
briefly. Similar with the case n ≥ k, we can observe
that the greater r is the greater the bullwhip effect is
when r is less than a certain number, and the greater
r is the less the bullwhip effect is when r is greater
than that certain number. It reaches the maximum val-
ue where r is in the vicinity of 0.6 in Fig.14. For fixed
values ofL1, the bullwhip effect reaches the minimum
value when both r = 0 and r = 1. Compared to
Fig.2, we can discover that the bullwhip effect when
n = 2, k = 5 is a lot less than that when n = 5, k = 2
at a given L1 value for any value of r. This phe-
nomenon indicates that k plays a more important role
than n at reducing the bullwhip effect. Moreover, the
shift of lead-time also can lead to a big decline of the
bullwhip effect.

According to the case n ≥ k, we have already
grasped the main property of b on the bullwhip effect
and based on our research, we discover that the im-
pact of b in the case of n < k is similar to the case
1. So we select r value arbitrarily and make the re-
lationship between price sensitive coefficient and the
bullwhip effect. Fig.15 shows the impact of the price
sensitive coefficient on the bullwhip effect when we
shift L1 and fix r = 0.5, n = 2, k = 5, L2 = 2, θ1 =
θ2 = 0.3, σ1 = σ2 = 1, V ar1 = 4, γ = 1. It can be
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Figure 14: Effect of r on the BWE under the MA in
the case of n < k
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Figure 15: Effect of b on the BWE under the MA in
the case of n < k

seen that, when the extent of concerning about his-
torical prices for customers is neutral, the bullwhip
effect increases slowly and then keeps stable as b in-
creases. In this case, it implies that when the price-
sensitive coefficient for product becomes higher and
higher, demand fluctuation will be more serious lead-
ing to a larger bullwhip effect.

In our model, r is a key factor on affecting the
bullwhip effect. Fig.16 mainly investigates the impact
of n and k on the bullwhip effect based on the change
of r. This figure depicts that the increase of n can
lead to the decrease of the bullwhip effect with da-
ta ages k = 5 and 6,respectively. When r is near one,
accurately speaking, from approximately 0.85, the im-
pact of n on the bullwhip effect is hardly existing any
more. From the figure, we also clearly observe that the
greater decrease of the bullwhip effect results from the
increase of k.

Fig.17 depicts the impact of γ on the bullwhip ef-
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Figure 16: Effect of n and k on the bullwhip effect
under the MA in the case of n < k
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Figure 17: Effect of γ on the BWE under the MA in
the case of n < k

fect similar to Figs.12-13. From the figure, we can
conclude that the bullwhip effect measure decreases
as price volatility V ar(p) of the retailer with a shorter
lead time increases and the greater the price variance
V ar(p) of the retailer who has a longer lead time the
greater the bullwhip effect is.

From the two cases, in general, we can summarize
that the influence of the consistency γ on the bullwhip
effect has something important with the relationship
of lead time between two retailers regardless of the
values of n and k under the MA forecasting method.

4.2 Behavior of the bullwhip effect under the
ES forecasting technique

In this section, we will discuss the impact of param-
eters on the bullwhip effect under the using of the
ES forecasting method for lead-time demand forecast.
Figs.18-24 simulate the expression of the bullwhip ef-

fect and illustrate the parameters impact on the bull-
whip effect under the ES forecasting technique. The
smoothing parameter α is a significant factor for the
ES forecasting. In the following, we will add the anal-
ysis of α.

Fig.18 depicts the impact of r on the bullwhip ef-
fect when we shift the lead time L1 and fix all oth-
er parameters values α1 = α2 = 0.5, b = 2.5, n =
2, L2 = 4, θ1 = θ2 = 0.3, σ1 = σ2 = 1, V ar1 =
4, γ = 1. It is shown that the trend is consistent for d-
ifferent L1 similar with the case 1 under the MA fore-
casting and the bullwhip effect increases slowly, and
then decreases as r increases. Specially, the bullwhip
effect attains the maximum when r is all about 0.5 for
different L1. And we can observe that the lead time
has serious influence on the bullwhip effect. The bull-
whip effect becomes to be great with the increase of
L1.
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Figure 18: Effect of r on the bullwhip effect for dif-
ferent L1 under the ES

Figs.19-20 indicates the relationship between the
bullwhip effect and with the increase of r on the con-
dition of α1 = α2 = 0.5, n = 2, L1 = L2 = 4, θ1 =
θ2 = 0.3, σ1 = σ2 = 1, V ar1 = 4, γ = 1. Fig.19
shows the surface of the bullwhip effect correspond-
ing to b and r values. Fig.20 is the X-Z projection
of the surface in order to see the relationship between
the bullwhip effect and the price-sensitive coefficien-
t clearly. By contrast, firstly, with the increase of b,
the bullwhip effect increases slowly in the beginning ,
and then is insensitive to changes after b is larger than
about 4 as reflected by the flatness of the curve when
r is less than a certain value from Figs.19-20. And for
this stage of r, we can observe from the surface that
the initial magnitude of the increase of the bullwhip
effect first gradually becomes larger and then becomes
less until no change. When r is greater than that cer-
tain value, the bullwhip effect decreases slowly at first,
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then is almost unchanged as b increases.
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Figure 19: The bullwhip effect corresponding to r and
b values under the ES
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Figure 20: Effect of b on the bullwhip effect for dif-
ferent r(The projection of Fig.19)

We can observe that the bullwhip effect increas-
es significantly with increase of the smoothing expo-
nent α1 and it decreases with the increase of n in
Fig.21. On one hand, the bullwhip effect converges
to the same value for fixed α1 and different n as r
approaches one. On the other hand, only when con-
sumers pay more attention to the impact of historical
price volatility on the demand in period t, the increase
of n, that is more terms of historical price, reduces the
bullwhip effect more effectively.

θ2 is the first-order moving average coefficient of
retailer 2 of the random error for the demand mod-
el. From Eq.41, we can know that the bullwhip ef-
fect is a function of θ22 and the range of θ2 is from
-1 to 1. Thus, it is the same with cases under MA
forecasting and the bullwhip effect is also a symmet-
ric function of θ2. It can be seen that the bullwhip
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Figure 21: Effect of α1 and n on the bullwhip effect
under the ES

effect decreases very slowly to the minimum and be-
comes to increase slowly with the increase of θ2 when
L1 < L2 in the Fig.22. From Fig.23, the bullwhip
effect increases very slowly when −1 < θ2 < 0 and
then decreases very slowly when 0 < θ2 < 1 under
the condition of L1 > L2. From these figures, we
can know, in general, that the properties of θ2 under
the ES are basically the same with the relationship be-
tween the bullwhip effect and θ2 under the MA. Thus,
the square of the moving average coefficient of the re-
tailer with a longer lead time is larger, the bullwhip
effect is greater.
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Figure 22: Effect of θ2 on the bullwhip effect under
the ES in the case of L1 < L2

Fig.24 depicts how the consistency of the two re-
tailers’ price γ affects the bullwhip effect when we
fix α1 = α2 = 0.5, n = 2, b = 2.5, L1 = 4, θ1 =
θ2 = 0.3, σ1 = σ2 = 1, V ar1 = 4. This figure clear-
ly shows it has different variation trends for different
L2. Compared with Figs.12-13, we can discover that
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Figure 23: Effect of θ2 on the bullwhip effect under
the ES in the case of L1 > L2
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Figure 24: Effect of γ on the bullwhip effect for dif-
ferent L2 under the ES

it is also similar to MA forecasting. When L1 > L2,
the bullwhip effect is a decreasing function of γ and
on the contrary, when we set L1 < L2 the bullwhip ef-
fect is an increasing function of γ. So we cant enlarge
γ to reduce the bullwhip effect blindly.

4.3 The comparison of MA and ES forecast-
ing methods

In order to compare the bullwhip effects for two meth-
ods, we should put a constraint on the span k and the
smoothing factors α1 and α2. According to Zhang
(2004), the average data ages which are defined as
the weighted average of the age for data points should
be the same for the MA and ES forecasting methods.
When we set the k+1

2 equal to 1
α , we obtain that the

smoothing exponents are selected as α1 = α2 =
2

k+1 .
Figs.25-27 depict the comparison between the

MA and ES by varying r from 0 to 1 and varying
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Figure 25: Comparison for the MA and ES forecasting
methods by varying r and n(k=2)
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methods by varying r and n(k=7)
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methods by varying r and n(k=19)
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n from 2 to 10, respectively. From these figures,
we can conclude that BWEES always is higher than
BWEMA whatever r and n are as long as α1 = α2 =
2

k+1 . In Fig.25, we set k = 2, α1 = α2 = 0.67
and fix other parameters. Because of n ≥ k, we just
need to select the expression of the bullwhip effect in
the case 1 to measure the bullwhip effect under the
MA forecasting method. This figure shows that, only
when r is near one and n = 2, BWEES is lower than
BWEMA. In Fig.26, let k = 7, α1 = α2 = 0.25 and
we vary the value of n, so when 2 ≤ n < 7, the case 1
applies to simulate the bullwhip effect under the MA
forecasting technique, and when 7 ≤ n ≤ 10, the case
2 applies. The result indicates that BWEES is higher
than BWEMA no matter what r and n is as long as
α1 = α2 =

2
k+1 .In Fig.27, we set k = 19, α1 = α2 =

0.1 and fix other parameters, so we can get n < k no
matter how n changes. Applying the case 2, we get
the Fig.27 which still shows that BWEES is high-
er than BWEMA. From these three figures, we can
observe additionally that BWEES and BWEMA get
lower gradually with the decrease of α1 and α2 or with
the increase of k. In conclusion, these phenomena re-
veal that when we consider the price fluctuation in the
demand process, the MA forecasting method is better
than the ES method almost whatever the extent of con-
sumers concerning about the historical price volatility
is.

5 Conclusions
The bullwhip effect is one of the most common prob-
lems in the supply chain management and price fluc-
tuation is an important cause of the bullwhip effect.
In our paper, we first establish a new linear demand
model which considers the impact of market price of
product and stochastic disturbance on the t-period de-
mand. Second, other than previous papers which al-
so study the price fluctuations, we build a two-stage
supply chain containing one supplier and two retailers
who both face the same demand process. Third, this
paper contrasts the bullwhip effect under two differ-
ent forecasting methods by simulating the impact of
parameters on the bullwhip effect comprehensively.

In general, we first deduce the bullwhip effect ex-
pression statistically based on the established model
in our paper.Due to the difficulty of applying the alge-
braic analysis, we use the numerical simulation. We
study the effect of lead-times on the bullwhip effect
similar to the results of Lee et al. (1997a,b), Chen et
al. (2000a,b) and Zhang (2004). Increasing the lead
times of two retailers will enhance the bullwhip effec-
t regardless of the forecasting methods applied. The
results also show that the extent of consumers con-

cerning about the historical price volatility r plays a
significant role on reducing the bullwhip effects for
both the MA method and the ES method. The bull-
whip effect both firstly increases then decreases with
the increase of r for these two forecasting methods
and the size of the impact depends on the forecasting
methods and has some differences. Moreover, the im-
pact of the price-sensitive coefficient on the bullwhip
effect is affected by the size of r. When r is smaller
than a certain value, the more sensitive demand is to
price changing the greater the bullwhip effect is what-
ever the forecasting methods are. Another parameter
n which is the span of previous market prices is im-
portant based on different r. Only when r is large to
a certain extent, the increase of n can reduce the bull-
whip effect obviously.

In our paper, we focus on the stochastic distur-
bance and investigate the impact of θ and σ2 on the
bullwhip effect. We discover that the impact of the
moving average coefficient θ of stochastic disturbance
on the bullwhip effect is not very significant. The vari-
ance σ2 affects the bullwhip effect more significantly
than θ. It implies that the impact of these two parame-
ters both has something with lead time. The larger any
one of the two parameters of the retailer which has a
longer lead time, the greater the bullwhip effect in the
supply chain.

From our model, we also study the consistency of
price volatility between two retailers. It is clear that
the bullwhip effect increases as price volatility of the
retailer with a longer lead time increases, and the bull-
whip effect decreases as price volatility of the retailer
with a shorter lead time increases.

Under the MA and ES methods, the average data
age has an important impact on the bullwhip effect,
and the larger it is, the weaker the bullwhip effect is.
By comparison, we also know that the MA forecasting
method is clearly the winner between the two methods
when we submit to our demand model in this paper.

Our findings not only are theoretical but also can
give the member of a supply chain some manageri-
al proposals. First, the findings suggest that managers
should keep a close eye on the price-predicting behav-
ior of consumers because it affects the bullwhip effect
directly as well as indirectly by affecting many oth-
er parameters. The larger concern extent of historical
price volatility can effectively reduce the bullwhip ef-
fect within limits, and if consumers pay enough atten-
tion to the impact of historical price volatility on the t-
period demand, they observing the historical prices in
the longer term can further reduce the bullwhip effect.
Hence, it has a guiding significance for reducing the
bullwhip effect that managers guide consumers con-
cerning the impact of the historical prices rationally.
Second, in order to reduce the bullwhip effect, man-
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agers should control the price volatility of the retail-
er which has a longer lead time as low as possible.
Third, in order to reduce the bullwhip effect, the re-
tailer which has a longer lead time should keep the
variance of stochastic disturbance as small as possi-
ble.At last, the MA method may be optimal for the
price-sensitive demand model, and managers should
firstly select the MA method for the forecasting of the
lead-time demand.

As a main cause of the bullwhip effect, the price
fluctuations can be further studied in many aspects.
First, this research did not consider the one-period-
ahead demand in the demand model. The demand
process in our paper is only related to the price, how-
ever, in practice, the previous demand data may affect
the -period demand somehow. Further researches can
be recommended to incorporate this factor into the de-
veloped demand model. Next, some general invento-
ry policies should be studied. The simple order-up-to
inventory policy could be misleading under the con-
dition of existing of an obvious fixed ordering cost.
The general (s,S) policy may have more practical sig-
nificance. Third, managers may comprehensively pay
attention to the inventory cost and the size of the bull-
whip effect when they evaluate the forecasting meth-
ods and take measures to reduce the bullwhip effec-
t. Lastly, our model did not consider the case when
there has correlation between the prices of two retail-
ers. This may be added in developed mathematical
models to expand their applicability.

Appendix. Proofs

Proof of Eq.(22).

V ar(DL1
1,t) = V ar(d1,t + d1,t+1+· · ·+ d1,t+L−1)

= V ar(d1,t)+V ar(d1,t+1)+· · ·+V ar(d1,t+L−1)
+2[Cov(d1,t, d1,t+1) + Cov(d1,t, d1,t+2) + · · ·
+Cov(d1,t, d1,t+L−1) + Cov(d1,t+1, d1,t+2)

+Cov(d1,t+1, d1,t+3)+· · ·+Cov(d1,t+1, d1,t+L−1)
+Cov(d1,t+2, d1,t+3) + Cov(d1,t+2, d1,t+4) + · · ·
+Cov(d1,t+2, d1,t+L−1) +

· · ·+ Cov(d1,t+L−2, d1,t+L−1)]

(A.1)

According to the basic statistical knowledge, we can
have

Cov(d1,t+j , d1,t+j+1) = Cov(a−bp1,t+j+rb(p1,t+j

−
n∑
i=1

p1,t+j−i/n) + ε1,t+j − θ1ε1,t+j−1, d1,t+j+1)

= (1− r)bCov(p1,t+j , d1,t+j+1)

−rb
n
Cov(

n∑
i=1

p1,t+j−i, d1,t+j+1)

+Cov(ε1,t+j , d1,t+j+1)−θ1Cov(ε1,t+j−1, d1,t+j+1)
= (1−r)bCov(p1,t+j , a− bp1,t+j+1 + rb(p1,t+j+1

−
n∑
i=1

p1,t+j+1−i/n) + ε1,t+j+1 − θ1ε1,t+j)

−rb
n
Cov(

n∑
i=1

p1,t+j−i, a− bp1,t+j+1 + rb(p1,t+j+1

−
n∑
i=1

p1,t+j+1−i/n) + ε1,t+j+1 − θ1ε1,t+j)

+Cov(ε1,t+j , a− bp1,t+j+1 + rb(p1,t+j+1

−
n∑
i=1

p1,t+j+1−i/n) + ε1,t+j+1 − θ1ε1,t+j)

−θ1Cov(ε1,t+j−1, a− bp1,t+j+1 + rb(p1,t+j+1

−
n∑
i=1

p1,t+j+1−i/n) + ε1,t+j+1 − θ1ε1,t+j)

= (1− r)bCov(p1,t+j ,−
rb

n
p1,t+j)

−rb
n
Cov(

n∑
i=1

p1,t+j−i −
rb

n

n∑
i=1

p1,t+j+1−i)

+Cov(ε1,t+j ,−θ1ε1,t+j) + 0

= −rb
2

n
(1−r)V ar(p1,t+j) +

r2b2

n2
[V ar(p1,t+j−1)

+V ar(p1,t+j−2) + · · ·+ V ar(p1,t+j−n+1)]

−θ1V ar(ε1,t+j)

= [
r2b2

n2
(n− 1)− rb2

n
(1− r)]V ar(p1)− θ1σ

2
1

(A.2)

and, based on this, we also have

Cov(d1,t+j , d1,t+j+2) = Cov(a− bp1,t+j

+rb(p1,t+j −
n∑
i=1

p1,t+j−i/n)+ε1,t+j

−θ1ε1,t+j−1, d1,t+j+2)

= (1−r)bCov(p1,t+j , a− bp1,t+j+2+rb(p1,t+j+2

−
n∑
i=1

p1,t+j+2−i/n) + ε1,t+j+2 − θ1ε1,t+j+1)

−rb
n
Cov(

n∑
i=1

p1,t+j−i, a−bp1,t+j+2 + rb(p1,t+j+2

−
n∑
i=1

p1,t+j+2−i/n) + ε1,t+j+2 − θ1ε1,t+j+1)
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+Cov(ε1,t+j , a− bp1,t+j+2 + rb(p1,t+j+2

−
n∑
i=1

p1,t+j+2−i/n) + ε1,t+j+2 − θ1ε1,t+j+1)

−θ1Cov(ε1,t+j−1, a− bp1,t+j+2 + rb(p1,t+j+2

−
n∑
i=1

p1,t+j+2−i/n) + ε1,t+j+2 − θ1ε1,t+j+1)

= −rb
2

n
(1−r)V ar(p1,t+j)+

r2b2

n2
[V ar(p1,t+j−1)

+V ar(p1,t+j−2) + · · ·+ V ar(p1,t+j−n+2)]

= [
r2b2

n2
(n− 2)− rb2

n
(1− r)]V ar(p1)

(A.3)

By applying this procedure, we can get

Cov(d1,t+j , d1,t+j+m) =[
r2b2

n2
(n−m)− rb2

n
(1− r)]V ar(p1), m ≥ 2, n ≥ m

− rb2

n
(1− r)V ar(p1), m ≥ 2, n < m

(A.4)

Using the Eq. (A.2)- (A.4) and Eq.(4), the V ar(DL1
1,t)

can be identified as

V ar(DL1
1,t) = L1V ar(d1) + 2{(L1−1)[(

r2b2

n2
(n−1)

− rb2

n
(1− r))V ar(p1)− θ1σ

2
1]

+ (L1 − 2)[
r2b2

n2
(n− 2)− rb2

n
(1− r)]V ar(p1)

+ (L1 − 3)[
r2b2

n2
(n− 3)− rb2

n
(1− r)]V ar(p1)

+ · · ·+ (L1 − L1 + 1)[
r2b2

n2
(n− L1 + 1)

− rb2

n
(1− r)]V ar(p1)}

= L1V ar(d1)− 2θ1(L1 − 1)σ21 + 2V ar(p1)

[−L1(L1 − 1)

2
· rb

2

n
(1− r)

+
r2b2

n2

L1−1∑
i=1

(L1 − i)(n− i)], n ≥ L1 − 1

(A.5)

For the MA forecasting method, we have

V ar(D̂L1
1,t) = V ar(

L1

k

k∑
i=1

d1,t−i)

= (
L1

k
)2V ar(d1,t−k+d1,t−k+1+· · ·+d1,t−2+d1,t−1)

(A.6)

and, similar to the V ar(DL1
1,t), from (A.2-A.4),

V ar(DL1
1,t) can be written as

V ar(D̂L1
1,t) = V ar(

L1

k

k∑
i=1

d1,t−i)

= (
L1

k
)2V ar(d1,t−1 + d1,t−2 + · · ·+ d1,t−k)

= (
L1

k
)2{kV ar(d1) + 2{(k − 1)[(

r2b2

n2
(n− 1)

− rb2

n
(1− r))V ar(p1)− θ1σ

2
1]

+ (k − 2)[
r2b2

n2
(n− 2)− rb2

n
(1− r)]V ar(p1)

+ (k − 3)[
r2b2

n2
(n− 3)− rb2

n
(1− r)]V ar(p1)

+ · · ·+ (k − k + 1)[
r2b2

n2
(n− k + 1)

− rb2

n
(1− r)]V ar(p1)}}

=
L2
1

k
V ar(d1)− 2θ1(k − 1)(

L1

k
)2σ21

+ 2(
L1

k
)2V ar(p1)[−

k(k − 1)

2
· rb

2

n
(1− r)

+
r2b2

n2

k−1∑
i=1

(k − i)(n− i)]

(A.7)

where we set n ≥ k − 1. In addition, we have

Cov(DL1
1,t , D̂

L1
1,t) = Cov(d1,t + d1,t+1 + · · ·

+ d1,t+L1−1,
L1

k

k∑
i=1

d1,t−i)

=
L1

k
[Cov(d1,t, d1,t−1) + · · ·+ Cov(d1,t, d1,t−k)

+ Cov(d1,t+1, d1,t−1) + · · ·+ Cov(d1,t+1, d1,t−k)

+ · · ·+
Cov(d1,t+L1−1, d1,t−1)+· · ·+Cov(d1,t+L1−1, d1,t−k)]

(A.8)

and from (A.2) and (A.4), it can result in

Cov(DL1
1,t , D̂

L1
1,t) =

L1

k
{[r

2b2

n2
(n− 1)

−rb
2

n
(1− r)]V ar(p1)− θ1σ

2
1

+[
r2b2

n2
(n− 2)− rb2

n
(1− r)]V ar(p1) + · · ·

+[
r2b2

n2
(n− k)− rb2

n
(1− r)]V ar(p1)
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+[
r2b2

n2
(n− 2)− rb2

n
(1− r)]V ar(p1) + · · ·

+[
r2b2

n2
(n− k − 1)− rb2

n
(1− r)]V ar(p1)

+ · · ·

+[
r2b2

n2
(n− L1)−

rb2

n
(1− r)]V ar(p1) + · · ·

+[
r2b2

n2
(n− L1 − k + 1)− rb2

n
(1− r)]V ar(p1)}

= −θ1L1

k
σ21 +

L1

k
V ar(p1){

r2b2

n2
[(n− 1 + n− 2

+ · · ·n− k) + (n− 2 + n− 3 + · · ·n−k−1)+· · ·
+(n− L1 + n− L1 − 1 + · · ·n− L1 − k + 1)]

−kL1
rb2

n
(1− r)}

= −θ1L1

k
σ21+

L1

k
V ar(p1){

r2b2

n2
[knL1 −

k

2
(k+1

+k + 3 + · · ·+ k + 2L1 − 1)]− kL1
rb2

n
(1− r)}

= −θ1L1

k
σ21 + [2(nrbL1)

2(4n− k − L1)

−4n3rb2L2
1]V ar(p1)

(A.9)

This completes the proof for the Eq.(22).

Proof of Proposition 1.
The total quantity of products received by the sup-

plier at the beginning of period t under the MA fore-
casting technique is

qt = q1,t + q1,t

= (1 +
L1

k
)d1,t−1 −

L1

k
d1,t−k−1

+ (1 +
L2

k
)d2,t−1 −

L2

k
d2,t−k−1

(A.10)

Taking the variance for qt, we can get

V ar(qt)=(1+
L1

k
)2V ar(d1,t−1)

+(
L1

k
)2V ar(d1,t−k−1)+(1+

L2

k
)2V ar(d2,t−1)

+(
L2

k
)2V ar(d2,t−k−1)

−2
L1

k
(1 +

L1

k
)Cov(d1,t−1, d1,t−k−1)

+2(1 +
L1

k
)(1 +

L2

k
)Cov(d1,t−1, d2,t−1)

−2
L2

k
(1 +

L1

k
)Cov(d1,t−1, d2,t−k−1)

−2
L1

k
(1 +

L2

k
)Cov(d1,t−k−1, d2,t−1)

+2
L1

k

L2

k
Cov(d1,t−k−1, d2,t−k−1)

−2
L2

k
(1 +

L2

k
)Cov(d2,t−1, d2,t−k−1)

(A.11)

Because p1,t and p2,t are both independent and identi-
cally distributed, we have

Cov(d1,t−1, d2,t−k−1) = 0,

Cov(d1,t−k−1, d2,t−1) = 0.
(A.12)

Substituting Eq.(3), Eq.(6), Eq.(18) and Eq.(A.12) in-
to Eq. (A.11), we can get

V ar(qt) = [(1 +
L1

k
)2 + (

L1

k
)2]V ar(d1)

+ [(1 +
L2

k
)2 + (

L2

k
)2]V ar(d2)

− 2
L1

k
(1 +

L1

k
)Cov(d1,t−1, d1,t−k−1)

− 2
L2

k
(1 +

L2

k
)Cov(d2,t−1, d2,t−k−1)

(A.13)

According to (A.4), the covariance term can be de-
rived as

Cov(d1,t−1, d1,t−k−1) =
[
r2b2

n2
(n− k)− rb2

n
(1− r)]V ar(p1), n ≥ k

− rb2

n
(1− r)V ar(p1), n < k

(A.14)

The same, we also have

Cov(d2,t−1, d2,t−k−1) =
[
r2b2

n2
(n− k)− rb2

n
(1− r)]V ar(p2), n ≥ k

− rb2

n
(1− r)V ar(p2), n < k

(A.15)

Substituting Eq.(3), Eq.(8), Eq. (A.14) and Eq.
(A.15) into Eq. (A.13), then take the simplification,
we can get two cases:
Case 1 : n ≥ k.

The variance of qt can be given as

V ar(qt)n≥k = {[(1 + L1

k
)2 + (

L1

k
)2](1− r)2

+[1− 2
L1

k
− 2(

L1

k
)2]
r2

n
+ (2L1 + 2

L1
2

k
)
r2

n2

+2
L1

k
(1 +

L1

k
)
r

n
}b2V ar(p1)
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+{[(1 + L2

k
)2 + (

L2

k
)2](1− r)2

+[1− 2
L2

k
− 2(

L2

k
)2]
r2

n

+(2L2 + 2
L2

2

k
)
r2

n2

+2
L2

k
(1 +

L2

k
)
r

n
}b2V ar(p2)

+[(1 +
L1

k
)2 + (

L1

k
)2](1 + θ21)σ

2
1

+[(1 +
L2

k
)2 + (

L2

k
)2](1 + θ22)σ

2
2.

Case 2 : n < k.
The variance of qt can be given as

V ar(qt)n<k

= {[(1 + L1

k
)2 + (

L1

k
)2][(1− r)2 +

r2

n
]

+2
L1

k
(1 +

L1

k
)
r

n
(1− r)}b2V ar(p1)

+{[(1 + L2

k
)2 + (

L2

k
)2][(1− r)2 +

r2

n
]

+2
L2

k
(1 +

L2

k
)
r

n
(1− r)}b2V ar(p2)

+[(1 +
L1

k
)2 + (

L1

k
)2](1 + θ21)σ

2
1

+[(1 +
L2

k
)2 + (

L2

k
)2](1 + θ22)σ

2
2.

This completes the proof for the proposition 1.

Proof of Eq.(35).
The variance of forecast error for lead-time de-

mand under ES forecast is

(σ̂L1
1,t)

2 = V ar(DL1
1,t − D̂L1

1,t)

= V ar(DL1
1,t)+V ar(D̂

L1
1,t)−2Cov(DL1

1,t , D̂
L1
1,t).

(A.16)

The second term in the variance formula can be ob-
tained from the following expression:

V ar(D̂L1
1,t) = V ar(L1d̂1,t) = L2

1V ar(d̂1,t). (A.17)

According to Eq.(31), we know the variance of d̂1,t is

V ar(d̂1,t) = V ar(

∞∑
i=0

α1(1− α1)
id1,t−i−1)

= α2
1[

∞∑
i=0

(1− α1)
2iV ar(d1,t−i−1)

+ 2
∞∑
i=0

∞∑
j>i

(1−α1)
i(1−α1)

jCov(d1,t−i−1, d1,t−j−1)]

From Eqs.(4) and (A.4), the variance of d̂1,t can be
written as

V ar(d̂1,t) = α2
1[V ar(d1)

∞∑
i=0

(1− α1)
2i+2

∞∑
i=0

[

n∑
j−i=1

(1−α1)
i+j [

r2b2

n2
(n−(j−i))− rb2

n
(1−r)]V ar(p1)

+
∞∑

j−i=n+1

(1− α1)
i+j [−rb

2

n
(1− r)]V ar(p1)]]

(A.18)

For simplicity, Eq.(A.18) can be derived as

V ar(d̂1,t)

=α2
1{V ar(d1)

1

α1(2−α1)
+2V ar(p1)

∞∑
i=0

[
n∑

j−i=1

(1−α1)
i+j [

r2b2

n2
(n−(j−i))− rb2

n
(1−r)]

+
∞∑

j−i=n+1

(1− α1)
i+j [−rb

2

n
(1− r)]]}

= α2
1{V ar(d1)

1

α1(2− α1)
+ 2V ar(p1)

·[r
2b2

n2

∞∑
i=0

n∑
j−i=1

(1− α1)
i+j(n− j + i)

−rb
2

n
(1− r)

∞∑
i=0

∞∑
j=i+1

(1− α1)
i+j ]}

= α2
1V ar(d1)

1

α1(2− α1)
+ 2α2

1V ar(p1)

{r
2b2

n2
1

α1
[

∞∑
i=0

(n− 1)(1− α1)
2i+1

−1− (1− α1)
n−1

α1

∞∑
i=0

(1− α1)
2i+2]

−rb
2

n
(1− r)

∞∑
i=0

(1− α1)
2i+1

α1
}

= α1V ar(d1)
1

(2−α1)
+

2

n2[1−(1−α1)
2]
V ar(p1)

{r2b2[α1(1− α1)(n−1)− (1−α1)
2

+(1− α1)
n+1]− rb2(1− r)nα1(1− α1)}

(A.19)
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Substituting (A.19) into (A.17), we can get

V ar(D̂L1
1,t) =

α1L
2
1

(2− α1)
V ar(d1) + 2L2

1V ar(p1)

{ r2b2

n2[1− (1− α1)
2]
[α1(1−α1)(n−1)

− (1− α1)
2 + (1− α1)

n+1]

− rb2(1− r)nα1(1− α1)

n2[1− (1− α1)
2]

}.

(A.20)

This completes the proof for Eq.(35).

Proof of Proposition 2.
The total order quantity at period t of the ES fore-

casting method is

qt =(1 + α1L1)d1.t−1 − α1L1d̂1,t−1

+ (1 + α2L2)d2.t−1 − α2L2d̂2,t−1

(A.21)

Therefore, the variance is

V ar(qt) = V ar(α1L1(d1.t−1 − d̂1,t−1) + d1.t−1

+ α2L2(d2.t−1 − d̂2,t−1) + d2.t−1)

= (1 + α1L1)
2V ar(d1.t−1) + (α1L1)

2V ar(d̂1.t−1)

+ (1 + α2L2)
2V ar(d2.t−1) + (α2L2)

2V ar(d̂2.t−1)

− 2(1 + α1L1)α1L1Cov(d1.t−1, d̂1,t−1)

+ 2(1 + α1L1)(1 + α2L2)Cov(d1.t−1, d2.t−1)

− 2(1 + α1L1)α2L2Cov(d1.t−1, d̂2,t−1)

− 2α1L1(1 + α2L2)Cov(d̂1.t−1, d2,t−1)

+ 2α1L1α2L2Cov(d̂1.t−1, d̂2,t−1)

− 2(1 + α2L2)α2L2Cov(d2.t−1, d̂2,t−1)

(A.22)

From (18), we know Cov(d1,t−1, d2,t−1) = 0,
Cov(d1,t−1, d̂2,t−1) = 0, Cov(d̂1,t−1, d2,t−1) = 0

and Cov(d̂1,t−1, d̂2,t−1) = 0. By substituting these
relationships into (A.22), we have

V ar(qt) = (1 + α1L1)
2V ar(d1,t−1)

+ (α1L1)
2V ar(d̂1,t−1)

+ (1 + α2L2)
2V ar(d2,t−1) + (α2L2)

2V ar(d̂2,t−1)

− 2(1 + α1L1)α1L1Cov(d1,t−1, d̂1,t−1)

− 2(1 + α2L2)α2L2Cov(d2,t−1, d̂2,t−1)

(A.23)

Using Eq.(31), we can derive

Cov(d1.t−1, d̂1,t−1)

= Cov(d1.t−1,

∞∑
i=0

α1(1− α1)
id1,t−1−i−1)

= α1

∞∑
i=0

(1− α1)
iCov(d1.t−1, d1,t−2−i)

(A.24)

According to (A.4), and take the simplification, the
Eq.(A.24) can be written as

Cov(d1.t−1, d̂1,t−1)=α1{[
r2b2

n2

n−1∑
i=0

(1−α1)
i(n−i−1)

− rb2

n
(1− r)

n−1∑
i=0

(1− α1)
i]V ar(p1)

+
∞∑
i=n

(1− α1)
i[−rb

2

n
(1− r)]V ar(p1)}

= α1V ar(p1)[
r2b2

n2

n−1∑
i=0

(1− α1)
i(n− i− 1)

− rb2

n
(1−r)

n−1∑
i=0

(1−α1)
i− rb2

n
(1−r)

∞∑
i=n

(1−α1)
i]

= α1V ar(p1)[
r2b2

n2

n−1∑
i=0

(1− α1)
i(n− i− 1)

− rb2

n
(1− r)

∞∑
i=0

(1− α1)
i]

= α1V ar(p1)[
r2b2

n2
[(n− 1)

1− (1− α1)
n

α1

− (1− α1)[1− (1− α1)
n]

α2
1

+
n(1− α1)

n

α1
]

− rb2

n
(1− r)

1

α1
]

= V ar(p1)[
r2b2

n2
[1− (1− α1)

n](n− 1

α1
)

+
r2b2

n
(1− α1)

n − rb2

n
(1− r)]

(A.25)

The same, we also have

Cov(d2.t−1, d̂2,t−1) = V ar(p2){
r2b2

n2
[1− (1− α2)

n]

· (n− 1

α2
) +

r2b2

n
(1− α2)

n − rb2

n
(1− r)}

(A.26)
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From (A.19), we can get

V ar(d̂2.t−1)=
α2

(2−α2)
V ar(d2)+

2

n2[1−(1−α2)
2]

· {r2b2[α2(1−α2)(n−1)−(1−α2)
2+(1−α2)

n+1]

− rb2(1− r)nα2(1− α2)}V ar(p2)
(A.27)

and

V ar(d̂2.t−1)=
α2

(2−α2)
V ar(d2)+

2

n2[1−(1−α2)
2]

· {r2b2[α2(1−α2)(n−1)−(1−α2)
2+(1−α2)

n+1]

− rb2(1− r)nα2(1− α2)}V ar(p2)
(A.28)

Substituting Eq.(A.25)-(A.28), Eq.(3) and Eq.(8)
into Eq.(A.23), then take the simplification, we have

V ar(qt) = [(1 + α1L1)
2 +

α3
1L

2
1

2− α1
](1 + θ21)σ

2
1

+ [(1 + α2L2)
2 +

α3
2L

2
2

2− α2
](1 + θ22)σ

2
2

+ {[(1 + α1L1)
2 +

α3
1L

2
1

2− α1
][(1− r)2 +

r2

n
]

+
(2rα1L1)

2(1−α1)

n(2− α1)
+
2r2α1L

2
1(1−α1)

n+1

n2(2− α1)

− 2rα1L
2
1(1− α1)(r + nα1)

n2(2− α1)

− 2(1 + α1L1)α1L1

[
2r2 − r

n
− r2[1− (1− α1)

n]

n2α1
]}b2V ar(p1)

+ {[(1 + α2L2)
2 +

α3
2L

2
2

2− α2
][(1− r)2 +

r2

n
]

+
(2rα2L2)

2(1−α2)

n(2− α2)
+
2r2α2L

2
2(1−α2)

n+1

n2(2− α2)

− 2rα2L
2
2(1− α2)(r + nα2)

n2(2− α2)

− 2(1 + α2L2)α2L2

[
2r2 − r

n
− r2[1− (1− α2)

n]

n2α2
]}b2V ar(p2).

(A.29)

This completes the proof for proposition 2.
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